Dynamic Security Labels and Noninterference

Lantian Zheng Andrew C. Myers
Computer Science Department

Cornell University, Ithaca, NY 14853
{z1t,andru}@cs.cornell.edu

Abstract cannot be predicted at compile time, so there must be a run-
time mechanism that allows security-critical decisions to be
_taken based on dynamic observations of this environment.

curity classes of data can vary dynamically. Information For example, it is important to be able to change security set-

flow policies provide the means to express strong security tl?fgs orr: f|Ieshan.d fdatabgse frecor?}s, and these chan%es ShOdUId
requirements for data confidentiality and integrity. Recent aftect how the information from these sources can be used.

work on security-typed programming languages has ShOWnA purely static mechanism cannot enforce this.

that information flow can be analyzed statically, ensuring 10 securely control information flow when access rights
that programs will respect the restrictions placed on data.can be changed and determined dynamicalignamicla-
However, real computing systems have security policies thatbels [15] are needed that can be manipulated and checked at
vary dynamically and that cannot be determined at the time run time. However, manipulating labels dynamically makes
of program ana|ysis_ For examp|e, a file has associated acjt more difficult to enforce a strong notion of information
cess permissions that cannot be known with certainty until Security for several reasons. First, changing the label of an
it is opened. Although one security-typed programming lan- Object may convert sensitive data to public data, directly vi-
guage has included support for dynamic security labels, thereolating noninterference. Second, label changes (and changes
has been no demonstration that a general mechanism for dy10 access rights in general) can be used to convey informa-
namic labels can securely control information flow. In this tion covertly; some restriction has to be imposed to prevent
paper, we present an expressive language-based mechanisgPvert channels [27, 22]. Some mandatory access control
for reasoning about dynamic security labels. The mechanism(MAC) mechanisms support dynamic labels but cannot pre-
is formally presented in a core language based on the typeoventimplicit flowsarising from control flow paths not taken
lambda calculus; any well-typed program in this language is at run time [5, 12].

This paper gives a language in which information flow is se-
curely controlled by a dependent type system, yet the se

provably secure because it satisfies noninterference. JFlow [14] and its successor, Jif [17] are the only imple-
) mented security-typed languages supporting dynamic labels.
1 Introduction However, although the Jif type system is designed to control

the new information channels that dynamic labels create, it

constraining how information is transmitted among objects has not been proved to enforce secure information flow. Fur-

and users of various security classes. These security classe,@er' Fhe dynamlc label mechgn!sm in Jif has limitations that
are expressed dabelsassociated with the information orits MPair expressiveness and efficiency.
containers. Denning [6] showed how to use static analysis [N this paper, we propose an expressive language-based
to ensure that programs use information in accordance withmechanism for securely manipulating information with dy-
its security class, and this approach has been instantiated iamic security labels. The mechanism is formalized in a core
a number of languages in which the type system implementslanguage (based on the typed lambda calculus) with first-
a similar static analysis (e.g., [25, 10, 30, 19, 3, 21]). These class label values, dependent security types and run-time la-
type systems are an attractive way to enforce security be-Pel tests. Further, we prove that any well-typed program of
cause they can be shown to enforwninterferencd9], a the core language is secure because it satisfies noninterfer-
Strong, end-to-end Security property_ For examp|e, when ap_ence. This is the first noninterference proof for a Security—
plied to confidentiality, noninterference ensures that confi- typed language in which general security labels can be ma-
dential information cannot be released by the program no hipulated and tested dynamically, though a noninterference
matter how it is transformed. result has been obtained for a simpler language supporting
However, security cannot be enforced purely statically. In the related notion of dynamjarincipals[24].
general, programs interact with an external environment that Some previous MAC systems have supported dynamic se-

Information flow control protects information security by

curity classes as part of a downgrading mechanism [23, 16],2.3 Security type systems for information flow

{/TIFFI] IS dwork WZ. tre".’lt _the tV;/O tm(_?[c_hanlsrpsl tortpogtoqally. Security type systems can be used to enforce security infor-
e downgrading IS important, 1t 1S USEIULto treat 1t as - a4iq fiows statically. Information flows in programs may
a separate m_echanlsm S0 that .Iabels can be manipulated dyE)e explicit flows such as assignments,implicit flows [6]
namically wf_nle preserymg non!nterfere_nce. arising from the control flow of the program. Consider an as-
~ The remainder of this paper is organized as follows. Sec- signment statememty, which contains an information flow
tion 2 presents some background on lattice label modelsfrom y to x. Then the typing rule for the assignment state-
and security type systems. Section 3 introduces the corement requires that, T £,, which means the security level
languagel ps.. and uses sampl&ps.. programs to show of v is lower than the security level of, guaranteeing the
some important applications of dynamic labels. Section 4 jhformation flow fromy to x is secure.
describes the type system bps.. and proves the noninter- One advantage of static analysis is more precise control of
ference result. Section 5 covers related work, and Section 6imp|icit flows. Consider a simple conditional:
concludes.

if bthen x = true else x = false

2 Background Although there is no direct assignment franto x, this ex-

Static information flow analysis can be formalized as a se- Pression has an implicit flow from into x. A standard
curity type system, in which security levels of data are rep- technique for controlling implicit flows is to introduce a

resented by security type annotations, and information flow Program-counter labe[S], written pc, which indicates the
control is performed through type checking. security level of the information that can be learned by know-

ing the control flow path taken thus far. In this example, the
branch taken depends ®nso thepc in thethen andelse
2.1 Security classes clauses will be joined witl,, the label ofb. The type sys-
tem ensures that any effect of expressidras a label at least
as restrictive as itpc. In other words, an expressiencan-
not generate any effects observable to users who should not
Rnow the current program counter. In this example, the as-
signments tax will be permitted only ifpc T /., which
ensureg, C /,.

We assume that security requirements for confidentiality or

integrity are defined by associatirggcurity classewith

users and with the resources that programs access. Thes

security classes form a lattic® We write k C £’ to indi-

cate that security clags is at least as restrictive as another

security class:. In this case it is safe to move information

from security clas# to &/, because restrictions on the use of

the data are preserved. To control data derived from sources3 The ADSec Ianguage

with classes: and’, the least restrictive security class that The core languagaps.. is a security-typed lambda calcu-

is at least as restrictive as botrandk’ is assigned. Thisis lus that supports first-class dynamic labels k.., labels

the least upper bound, or join, writtén | k' are terms that can be manipulated and checked at run time.
Furthermore, label terms can be used as statically analyzed
type annotations. Syntactic restrictions are imposed on label

2.2 Labels terms to increase the practicality of type checking, following

Type systems for confidentiality or integrity are concerned the approach used by Xi and Pfenningiirfy (C') [29].

with tracking information flows in programs. Types are ex- . From the computational stand_poimmsec is fairl_y expres-
tended with securityabelsthat denote security classes. A SIVe: because it supports both first-class functions and state

label ¢ appearing in a program may be simply a constant se- (which together are sufficient to encode recursive functions).

curity classk, or a more complex expression that denotes a

security class. The notatigh C ¢, means that, denotesa ~ 3-1 Syntax

security class that is at least as restrictive as that denoted byrhe syntax of\ ps.. is given in Figure 1. We use the name

. k to range over a lattice of label valugs(more precisely, a
Because a given security class may be denoted by differ-join semi-lattice with bottom element), z, y to range over

ent labels, the relatiol generates a lattice @quivalence variable name$’, andm to range over a space of memory

classeof labels withLl as theoin (least upper bound) oper- addressesdA.

ator. Two labeld; and/, are equivalent, writteli; ~ /o, if To make the lattice explicit, we writ€ = k1 C ko

{1 € ¢y andls C /4. The join of two labels¢; Ui /5, denotes to mean thatk, is at least as restrictive ds in £, and

the security class that is the join of the security classes thatL = k = k; U ko to meank is the join ofk; and ks in

¢, and/, denote. For example, # has label,, andy has L. The least and greatest elementsCofre L and T. Any

labelZ,, then the sunx+y is given the label, L ¢,,. non-trivial label lattice contains at least two poidtgnd H

Base Labels k € L
Variables z,y,f € V
Locations m € M
Labels {¢,pc == k| x| €Ul
Constraints C = (Cb,C e
Base Types B o=
Security Types T = [
Values voon=
e

Expressions v iUl | erex | le

| let (z,y)=e1 ines

int | label | unit | (z:71)[C]* 72 | Tref | (x:71) CATEN

z | n|m" | Mz:7)[Cipc.e | ()| k| (z=n[C], v2:7)

| e1:=e2 | refTe | if {1 C {3 then e; else ez

Figure 1: Syntax of pge.

where H Z L. Intuitively, the label, describes what in-
formation is observable bipw-security usersvho are to be
prevented from seeing confidential information. Thosy-
securitydata has a label bounded abovelgyhigh-security
data has a label (such &5 not bounded by_..

In Apsec, @ label can be either a label valbea variable
x, or the join of two other label§, LI /5. For example[, x,
andL U x are all valid labels, and LI = can be interpreted
as a security policy that is as restrictive as bbtandx. The
security typer = (3 is the base typ& annotated with label
£. The base types include integers, unit, labels, functions,
references and products.

The function type(z :) Gipe, 75 IS a dependent type
sincery, 72, C andpc may mention:. The component’ is a
set oflabel constraint®ach with the fornd; C /5; they must
be satisfied when the function is invoked. Tgftecomponent
is a lower bound on the memory effects of the function, and
an upper bound on thec label of the caller. Consequently,
a function is not able to leak information about where it is
called. Without the annotations and pc, this kind of type
is sometimes written adx : ;.75 [13].

The product typéz : 7;)[C] * 72 is also a dependent type
in the sense that occurrencesratan appear im, 7o andC.
The component’ is a set of label constraints that any value
of the product type must satisfy. 4 does not contain and
C is empty, the type may be written as the more famitiat
T9. Without the annotatiod, this kind of type is sometimes
written Yz : .75 [13].

In Apsec, Values include integens, typed memory loca-
tionsm7, functionsA(x: 7)[C'; pc|. e, the unit valug(), con-
stant labelsk, and pairs(z = v1[C], v2 : 7). A function
Az : 7)[C; pc]. e has one argument with type 7, and the
componentg” and pc have the same meanings as those in
function types. The empty constraint €&br the toppc can
be omitted. A paifx=v1[C], ve:7) contains two values;
andv,. The second element has typer and may mention
the first element; by the name:. The component’ is a set
of label constraints that the first element of the pair must sat-
isfy. For example, suppogé contains the constraintC L,
thenv; C L must be true since inside the pair the value of

ISvq.

Expressions include values variables, the join of two
labels?¢; U 45, applicationse; eq, dereferenceée, assign-
mentse; := es, referencesrefe, label-test expressions
if /1 C /5 then e; else ey, and product destructors
let (z,y)=v ines.

The label-test expressiart ¢; C /5 then e else es IS
used to examine labels. At run time, if the valuelgfis a
constant label at least as restrictive as the valug,dhene;
is evaluated; otherwisey, is evaluated. Consequently, the
constraint/; C /5 can be assumed when type-checking

The product destructdret (z,y) =e; in ey unpacks the
result ofe;, which is a pair, assigns the first elementtand
the second tg, and then evaluates.

3.2 Operational Semantics

The small-step operational semantics)\gfs.. IS given in
Figure 2. LetM represent a memory that is a finite map from
typed locations to closed values, and {ef M) be a ma-
chine configuration. Then a small evaluation step is a transi-
tion from (e, M) to another configuratiofe’, M'), written

(e, M) — (', M'").

Itis necessary to restrict the form @f, M) to avoid using
undefined memory locations. L&ic(e) represent the set of
memory locations appearing in A memory M is well-
formed if every address: appears at most once dom(M),
and for anym™ in dom(M), loc(M(m™)) C dom(M). The
configuration(e, M) is well-formed if M is well-formed,
loc(e) C dom(M), ande contains no free variables. By
induction on the derivation ofe, M) — (¢/, M'), we can
prove that if (e, M) is well-formed, then(e’, M’} is also
well-formed.

The notatione[v/z] indicates capture-avoiding substitu-
tion of valuev for variablez in expressiore. Unlike in the
typed lambda calculug[v/x] may generate a syntactically
ill-formed expression ift appears in type annotations inside
e, andv is not a label. However, this is not a problem be-
cause the type system af,s.. guarantees that a well-typed
expression can only be evaluated to another well-typed and
thus well-formed expression.

LEk=Fk Uk

[E1] <I€1|_|]€27 M>I—><k, M>
[E2] ('m"™, M) — (M(m"), M)
m & address-space(M)
[E3] (ret v, M) r— (m™, M[m" = o)
[E4] (m” :=v, M) — ((), M[m™ — v])
[E5] ((A(z:7)[Cspcl.e) v, M) — (e[v/z], M)
LEk Cke
[E6] (if k1 C k2 then eq else ez, M) — (e1, M)
(E7] L= ki L ko

(if k1 C k2 then eq else ez, M) —— (e2, M)
[E8] (let (z,y)=(z=v1[C], v2:7)ine, M) —> (e[va/y][vi/z], M)

(e, M) — (e, M")

(] (B, M) — (B, 317
E[] == [lel vl | [l=elv:=[]|[]|zret"[] | [JUla | kL[]
| if [] T fothen e; else ey | if ki T[] then e else ey | let (z,y)=[]ine
Figure 2: Small-step operational semantics\gk..
The notation)M (m™) denotes the value of location™ 3.3.1 Run-time access control

in M, and the notation/[m™ — v] denotes the memory
obtained by assigningto m™ in M.

The evaluation rules are standard. In rule (E3), the nota-
tion address-space(M) represents the set of location names
in M, thatis,{m | 37 s.t. m™ € dom(M)}. In rule (E8),
vo May mentione, so substituting, for y in e is performed
before substituting, for x. The variable name in the prod-
uct value matches so that no variable substitution is needed
when assigning; andwv, to x andy. In rule (E9),E repre-
sents an evaluation context, a term with a single hole in redex
position, and the syntax df specifies the evaluation order.

Implementing run-time access control is one of the most
important applications of dynamic label mechanisms. Sup-
pose there exists a file that stores one integer, and the ac-
cess control policy of the file is unknown at compile time.
In Apsec, the file can be encoded as a reference of type
(z : label,) * (int, ref),, wherex is a dynamic label
consistent with the access control policy of the file, and the
reference component of tyfént, ref), stores the con-
tents of the file. Thus storing an integer of tyjaet ;7 in the

file is equivalent to assigning the integer to the memory ref-
erence component, which requires thais at least as high

as H. Since the value ot is not known at compile time,
3.3 Examples the conditionH T x can only be checked at run time, us-
As discussed in Section 1, dynamic labels are vital for pre- N9 & label-test expression. The following function stores a
cisely controlling information flows between security-typed Nigh-security integee in the filew:

programs and the external environment. A practical program
often needs to access files or communicate through networks.
These activities can be viewed as communication through an

I/O channelwith a corresponding label consistent with the Ngte that thepe label of the function i because the func-
security policy of the entity (such as a file or network socket) +ion body contains a memory effect of lahewhen H C .
represented by the channel. Because the security policy of |t js also important to be able to change file permissions at
an external entity may be discovered and even changed atun time. The following code changes the access control pol-
run time, the precise label of an I/O channel is dynamic and icy of the filew to labelz. However, the original contents of
operations on a channel cannot be checked at compile time.w need to be wiped out to prevent them from being implic-

Aw:((z:1label)) * (int, ref),), ref . A\(z:inty)[H].
let (z,y)=!lwinif H C x then y := zelse ()

itly declassified, which provides stronger security assurancewhich this example demonstrates. Without recursive labels,
than an ordinary file system. the type of a multilevel channel cannot be constructed so
simply, because selecting a label for the label compoment
becomes problematic. Any constant label that is chosen may
be inappropriate; for example, if the label has the label
then it may be impossible to compute a suitable label to sup-
ply asz. Another possibility is to provide yet another label
3.3.2 Multilevel communication channels that is to function as the label of but this merely pushes

Information flows inside a program are controlled by static € Problem back by one level. Givingthe typelabel, is
type checking. When information is exported outside a pro- & N€atway to tie off this sequence.
gram through an I/O channel, the receiver might want to .
know the exact label of the information, which calls foul- 4 Type SyStem and noninterference
tilevel communication channe[g] unambiguously pairing This section describes the type system\gf.. and proves
the information sent or received with its corresponding secu- that the type system guarantees that any well-typed program
rity label. Supporting multilevel channels is one of the basic has the noninterference property.
requirements for a MAC system [7].]
IN Apsee, @ multilevel channel can be encoded by a mem- 4.1 Label constraints

ory reference of typ€(z : 1abel,) int;), ref, which Because of dynamic labels, it is not always possible to de-
stores a pair composed of an integer value and its label.qcide whether the relationshipy C ¢, holds at compile
The confidentiality of the integer component is protected by time; therefore, the label-test expressiad)(must be used
the label component, since extracting the integer componentto query the relationship. However, this dynamic query may
from such a pair requires testing the label component: create new information flows; the languages.. and its
type system are designed to statically control these new in-
formation flows.
Although labels are first-class valuesips.., label terms
In the above example, the constraint L must be satisfied ~ have arestricted syntactic form so that any label term can be
in order to store the integer componentiri**z. Since the used as a type annotation. Therefore, constraints on label
readability of the integer component depends on the value ofterms are also type-level information that can be used by the
x, letting z recursively label itself ensures that all the autho- type checker.
rized readers of the integer component caniestd retrieve Furthermore, iM ps.. label terms are purely functional:
the integer value. they have no side effects and evaluate to the same value in
Sending an integer through a multilevel channel is imple- the same context. As aresult, any label constraint of the form
mented by pairing the integer and its label and storing the ¢1 C ¢2 thatis known to hold in a typing context can be used
pair in the reference representing the channel: for type checking in that context. For example, consider the
following code:

Ax:label) . \y:(int, ref) . A(z:inty)[H].
if H C z then y:= zelse ()

Like other I/O channels, a multilevel channel may have a according to the semantics of the label-test expression, the
label that is an upper bound of the security levels of the assignmeny := = will be executed only iff C z holds.
information that can be sent through the channel. PrOd“CtThus, the constraintl T = can be used to decide whether

label constraints can be used to specify the label of a mul- = is secure. In this examole. anv information stored
tilevel channel. For example, a bounded multilevel chan- 2 = Y) ple, any

nel can be represented by a memory reference with typein z is only accessible to users with security level at least as
((z : 1label,)[z C €] = int,), ref, wherel is the label high asz. So it is secure to storein y because: is at least

of the channel, and the constraint_ ¢ guarantees any in- as high as{.
formation stored in the reference has a security label at most In general, for each expressienthe type checker keeps
as high ag. Sending information through a bounded multi- track of the set of constraings that are known to be satisfied
level channel often needs a run-time check as in the follow- whene is executed, and usésin type-checking:.
ing code: Another common approach for relating type information
Az: (((2:1abel,))[w T €] = int.) . Tef). . Aw:labely. to.tgrm—level constructs is to use singleton types, types con-
A(y:intw)[L]. if w C £ then z := (z=uw, y:int,) else () taining only one yalue [2]. We have chosen to use dependent
types because it is the approach used by Jif, and the approach
The ability to recursively use a variable to construct the la- based on singleton types neither provides more expressive-
bel of its own type provides a useful kind of polymorphism, ness nor simplifies the type system or the noninterference

Aw: ((z:1label) x inty ref) ref . A(z:label)[L].
My:int, ref))[Ll].w:= (r=2z, y:int, ref,))ref™™=0

Az:((x:label,) * int,), .let (x,y)=z1in
if x C L then m*™*r := yelse ()

Az:(((z:label,)) * int,), ref) . \w:label,,.
AMy:inty,)[L]. z := (x=w, y:int,)

LE ki C ko LELeC relationship, the subtyping context also needs to include the

[C1] [C2]

CrEkiCke CrHtl Ely C component. The inference rules for proviag- 7, < 7o
are the rules shown in Figure 4 plus the standard reflexivity
(€3] CrHeET [c4 CrHLlLC/ and transitivity rules.
, Rules (S1)—(S3) are about subtyping on base types. These
[C5] CreCieue . ;
rules demonstrate the expected covariance or contravariance.
CHO Tl CFlyC 0y In Apsec, function types contain two additional components
[Co] CrGLC 6 pc and C, both of which are contravariant. Suppose the
= . . C1;pey ;s
CreC it CheC it function typecT. - (x : m) —— 71 is a subtype of
[C7] CrelG Tl 7 = (z:73) —F2, 75, Then wherever functions with type
N 7/ can be called, functions with type can also be called.
This implies two necessary premises. First, whereVer
Figure 3: Relabeling rules is satisfied,C; is also satisfied. Sinc€' is satisfied, this
premise is writtenC', Cs + C7, meaning that for any con-
Ctn<mn Cktn<n straint/, C /5 in Cy, we can derive”, Cy - ¢; C /5. Sec-
[S1] CF 71 zef <75 zef ond, the premisgc, C pc, is needed because tipe of a
- function type is an upper bound on thewhere the function
Ckn<n Ckm <7 is applied.
Ctpe,Epe, C,CotCy In rules (S2) and (S3), variableis bound in the function
[S2] CF (wem) CUPL o o Cairea and product. types. For simplic_ity, we assume thaloes
(i) 71 < (i72) 2 not appear irC, sincea-conversion can always be used to
Crmn<m Chrl<t C.CFCs renamex to another fresh variable. This assumption also
[S3] applies to the typing rules.

Ct (z:71)[C1] x 11 < (z:72)[Ca] * 75

Rule (S4) is used to determine the subtyping on security

CHBL< By CHIU Tl types. The premis€ + 8; < [, is natural. The other
C+ (B)e, < (Ba)e, premiseC + ¢; C {5 guarantees that coercing data fram

to m does not violate information flow policies.

[54]

Figure 4: Subtyping rules 4.3 Typing

_ . The type system ok pg.. prevents illegal information flows
proof in any substantial way. In general, we feel that the and guarantees that well-typed programs have a noninterfer-
choice between dependent types and singletons is a mattegnce property. The typing rules are shown in Figure 5. The

of taste. notationlabel(3;) = ¢ is used to obtain the label of a type,
. and the notationg C 7 andr C ¢ are abbreviations for
4.2 Subtyping ¢ C label(7) andlabel(7) C ¢, respectively.

The subtyping relationship between security types plays an The typing context includestgpe assignmerit, a set of
important role in enforcing information flow security. Given constraints”' and the program-counter lahed. I' is a finite

two security types, = (1, andm, = [,,, SUpposer; is orderedlist of = : 7 pairs in the order that they came into
a subtype ofr,, written asr; < 7. Then any data of type scope. For a given, there is at most one pair: 7 in I'.

71 can be treated as data of type Thus, data with label; A variable appearing in a type must be a label variable.
may be treated as data with lalde] which required; C /. Therefore, a type is well-formed with respect to type as-

The type system keeps track of the set of label constraintssignmentl’, writtenT" - 7, if I" maps all the variables in
that can be used to prove relabeling relationships betweento label types. The definition of well-formed labels it ¢)
labels. LetC + ¢, C ¢, denote that; T ¢, can be in- is the same. Considdt = z1 : 71,...,2, : 7,. FOr any
ferred from the set of constrain€s. The inference rules are 0 < i < n, the typer; may only mention label variables that
shown in Figure 3; they are standard and consistent with theare already in scopet; throughz;. Therefore " is well-
lattice properties of labels. Rule (C2) shows that all the con- formed if for any0 < ¢ < n, 7; is well-formed with respect
straints inC' are assumed to be true. The constraintset toxy:7,...,xz; : 7;. For example, & : labely,y : int,”
may contain constraints that are inconsistent with the lattice is well-formed, but % : int,,x : 1abel;” is not. A con-
L, such asi C L. Inconsistent constraint sets are harmless straint/; C /5 is well-formed with respect td' if both ¢,
because they always indicate dead code, such as expressioand/, are well-formed with respect tB. A typing context
e1in“if H C L then e else ey”. “T'; C; pc” is well-formed if I is well-formed, andpc and

Since the subtyping relationship depends on the relabelingall the constraints i’ are well-formed with respect .

[INT] I';C;pckn:int,
[LABEL] I';C; pck k : label
I';C; pck £y :1labelyy I';C5 pek 4o : labely
[JOIN] ! 2
I‘;C;pcl—ﬁluégzlabelylu%
I';Cs;pcke:r CkpcC T
[REF] T
I';C; pckrefTe: (Tref),
Lyz:7";C";pd’ Fe:T
[ABS] 1c:per M) (O p)e s ((@ir') SO0 7,
I';C; peker: ((x:1abely) e, T)e
I';C; pct 42 : labelyr(s, /q)
CF pclUlC pcla)x)] C+ C'[tz/x]
x € FV(T)UFV (') UFV(C’) UFV (pc’)
[L-APP]
I';C5peker by :T[la/z] UL
I;C5 pek v : v /2] Dyz:m b7
T';C; pet veolvi/x] : To[v1 /7] C+ C'w /]
[PROD] n ;
[505 pek (z=0i[C"], v2:m2) : ((2:71)[C] % 72) 1
[';C5 pet £« label, i€ {1,2}
I'; Co61 Che; pclliUbyb-er: T
[;C;pculi Uty eyt
[IF]

I';C; pck if £1 C {2 then e; else ep : 7L LYY

[UNIT] I';C; pet () s unit
FV(r)=10
L
[Loc I;C;pcEm™ : (7ref) L
z:Tel
[VAR] I';Cipeka:T
I';C; peke: (Tretf)
[DEREF] I';CspeHle: Tl
I';C; pcker: (7 ref),
ASSIGN I';Cipekex:m ChpecUlE T
[] T';C; pck el :=ep :unit
F;C;pc}—elz((m:T')%)e
I';C;pckes: 7
Ct pclUl C pc crc
& FV(r)UFV () UFV(C')UFV (pc
LAPP] ¢ FV(7) () () (pc)
I';Cspckerex:TUL
[;C;peker: ((z:m)][C] % T2)e
Iyz:mUl,y:mul; C,C"; pckes:T
'NPACK
[UNPACK] I';C; pet let (z,y)=e1 ines : 7
- I'sCspecke:r CHr<7
[] I;C;pcke:7

Figure 5: Typing rules for tha ps.. language

The typing assertiol’; C'; pc - e : 7 means that with
the type assignmerit, current program-counter label gs,
and the set of constraints satisfied, expressionhas type
7. The assertiol ; C'; pct e : 7 is well-formed ifT"; C'; pc
is well-formed, and™ F 7.

Rules (INT), (UNIT), (LABEL) and (LOC) are used to

ing a reference with typér ref), has typer U ¢, where
TUL = Bpyp if 7S Ber.

Rule (ASSIGN) checks memory update. As in rule (REF),
if the updated memory location has tyge ref),, then
C F pc C 7 is required to prevent illegal implicit flows. In
addition, the premis€' - pcLI ¢ C 7 implies another condi-

tion C' + ¢ C 7 that is required to protect the confidentiality
of the reference that is assigned to. Consider the following
code that allows low-security users to learn whethér L

by observing which ofn; andms is updated t®:

check values. Value has type3, if v has base typg. Rule
(LOC) requires typed locatiom™ contain no label variables
so thatm”™ remains a constant during evaluation. This is
enforced by the premiseV (r) = (), whereFV (7) denotes
the set of free variables appearingrin

Rule (VAR) is standard: variable has typel'(z). Rule
(JOIN) checks the join of two labels and assigns a result label The code is not well-typed because the conditibh ¢ C 7
that is the join of the labels of the operands. does not hold for the assignment expression.

Rule (REF) checks memory allocation operations. If the Rule (ABS) checks function values. The body is checked
pc label is high, the generated memory location must not be with the constraint sef” and the program-counter lahet,
observable to low-security users, which is guaranteed by theso the function can only be called at places whetés sat-
premiseC - pc C 7. Rule (DEREF) checks dereference isfied and thec label is not more restrictive thagn'.
expressions. Since some information about a reference can Rule (L-APP) is used to check applications of dependent
be learned by knowing its contents, the result of dereferenc-functions. Expression, has a dependent function typer :

Az :labely)[L]. ((ifx C Lthenmi™ else my™*) := 0)

labelr) 2P, 1), wheres does appear iff, C', pd or Theorem 4.1 (Subject reduction). Supposgc - ¢ : 7, and
7. As aresult, rule (L-APP) needs to ué#l, /z], C'[¢a /2], there exists a well-typed memofy such thate, M) —
pc’ [0 /2] and7[¢5/z], which are well-formed sincé, is a (¢/, M'), thenM’ is well-typed, angpc - e’ : 7.

label. That also explains why;, with its dependent func- Theorem 4.2 (Progress).If pct e: 7, andM is a well-
tion type, cannot be applied to an arbitrary expressigin typed memory such thdt, 1) is a well-formed configura-

substitutinge, for z in ¢/, C’, pc’ and T may generate ill- tjon, then either is a value or there exists and M’ such
formed labels or types, and it is generally unacceptable for that (e A1) —s (¢!, M").

the type checker to evaluatg to valuev, and substitute
for , which would make type-checking undecidable. The 4.4 Noninterference proof

expressiveness ofps.. is not substantially affected by the This section outlines a proof that any well-typed program in

Ir:ts)gllct:gfr:sths;?agggfas?Srtlétjigﬁucoa?n%aenaonll)i/etéi app\)lller:d kt)‘lj ADpsec Satisfies the noninterference property. (The full proof
7) ppliedio a varablgg given in the appendix.) Consider an expressiimA pgse.-
that receives the result of an arbitrary expression. For ex-

amole. in the following code. the appiications: indirectl Suppose: has one free variable, andz : 7 e : inty,
appF;ie’Se (0 60" wing ' pplicatieqz indirectly whereH C 7. Thus, the value of is a high-security input
1 2

to e, and the result of is a low-security output. Then nonin-

(Az:1labely. if z C L then e,z else ())ea terference requires that for all valuesf type r, evaluating
This works as long as the function enclosing: is not de- e[v/z] in the same memory must generate the same result, if
pendent. the evaluation terminates. For simplicity, we only consider

Inrule (L-APP), the label of, / is at least as restrictive as that results are integers because they can be compared out-
¢, preventing the result ef, from being leaked. The premise side the context of pge..
C F C'[ty/z] guarantees that’[(, /x] are satisfied when the The noninterference property discussed herteiimina-
function is invoked. The premis€ + pc LI ¢ T pc[l2/x] tion insensitiveg21] because:[v/x] is required to generate
ensures that the invocation cannot leak the program countetthe same result only if the evaluation terminates. The type
or the function itself through the memory effects of the func- system ofA ps.. does not attempt to control termination and

tion. timing channels. Control of these channels is largely an or-
Rule (APP) applies when does not appear i6”, pc’ or thogonal problem. Termination channels can leak at most

7. In this case, the type @f; is just a normal function type, one bit per run, so they have often been considered accept-

soe; can be applied to arbitrary terms. able (e.g., [6, 25]). Some recent work [1, 20, 31] partially
Rule (PROD) is used to check product values. To check addresses the control of timing channels.

vo, the occurrences of in vo andr, are both replaced by Let—* denote the transitive closure of the- relation-

v1, sincex is not in the domain of". If v; is not a label, ship. The following theorem formalizes the claim that the

thenz cannot appear imy. Thus,z[v1/z] is always well- type system o\ ps.. enforces noninterference:

formed no matter whether, is a label or not. Similarly, the
occurrences of in 7 andC’ are also replaced by; when
v1 andC” are checked.

Rule (UNPACK) checks product destructors straightfor-
wardly. After unpacking the product value, those product
label constraints i€’ are in scope and used for checking To prove this noninterference theorem, we adapt the el-

Rule (IF) checks label-test expressions. The constraint egant proof technique developed by Pottier and Simonet for
¢, C ¢, is added into the typing context when checking the an ML-like security-typed language [19] (which did not have
first branche;. When checking the branches, the program- dynamic labels). To show that noninterference holds, it
counter label subsumes the labelgofnd/s to protect them iS necessary to reason about the executions of two related
from implicit flows. The resulting type contairt4 and ¢, terms:e[v, /x] ande[vs /x]. We extend\ ps.. with a bracket
because the result is influenced by the value§ @nd/s. construct(e; | es) that represents alternative expressions that

Rule (SUB) is the standard subsumption rule.7Ifs a might arise during the evaluation of two programs that differs
subtype ofr’ with the constraints irC' satisfied, then any initially only in v; andwvy. Thene[v; /x] ande[vs/x] can be
expression of type also has type’. incorporated into a single teraf(v; | v2)/z] in the extended

This type system satisfies the subject reduction property language\?.., providing a syntactic way to reason about
and the progress property. The proof is standard, so we sim-two executions.
ply state the theorems here. Using \%..., the noninterference theorem can be proved

in three steps:

Theorem 4.3 (Noninterference). Supposer : 7 + e :
inty, andH C 7. Given two arbitrary values; and v,
of type =, and an initial memony\, if {(e[v;/x], M) —*
(vi, M) fori € {1,2}, thenv] = v}.

?

Definition 4.1 (Well-typed memory). A memory M is
well-typed if for any memory locatiom™ in M, M (m7) : 1. Prove that the evaluation of},s,, adequately repre-
T. sents the execution of twbpg,.. terms. Given aAQDSeC

terme, let |e]; and|e |, represent the twa pgs.. terms Various general security models [11, 23, 8] have been pro-
encoded by. Further, if M mapsz to al%,, terme, posed to incorporate dynamic labeling. Unlike noninterfer-
then| M |; mapsz to |e]; fori € {1,2}. Thenwe can ence, these models define what it means for a system to be
formalize the adequacy of,,. as the following two secure according to a certain relabeling policy, which may

lemmas (their proof is straightforward): allow downgrading labels.

Using static program analysis to check information flow
Lemma 4.1 (Soundness).If (e, M) ~— (¢, M), was first proposed by Denning and Denning [6]; later work
then(leli, [M]:) — ([¢']i, [M'];) fori € {1,2}. phrased the analysis as type checking (e.g., [18]). Noninter-

ference was later developed as a more semantic character-
ization of security [9], followed by many extensions. Vol-
pano, Smith and Irvine [25] first showed that type systems
can be used to enforce noninterference, and proved a version
) o) o of noninterference theorem for a simple imperative language,
2. Prove that},, satisfies subject reduction: the result o ring a line of research pursuing the noninterference re-
of an expression has the same type as the expressiongt for more expressive security-typed languages. Heintze
The type SyStem_Qj‘QDSec explicitly enforces noninter- 5y Riecke [10] proved the noninterference theorem for the
ference by requiring that any bracket expresgiares) SLam calculus, a purely functional language. Zdancewic
has a high-security type. The differences between two g Mmyers [30] investigated a secure calculus with first-class
executions are completely captured by bracket expres-qntinyations and references. Pottier and Simonet [19] con-
sions, so the requirement that brackets must have high-gjgered an ML-like functional language and introduced the
security types ensures that the differences between the, ot technique that is extended in this paper. A more com-

two executions are unobservable to low-security USers. yjete survey of language-based information-flow techniques
Intuitively, it is because of the explicit enforcement .4 pe found in [21, 32].

of noninterference that the noninterference theorem of
Apsec €an be reduced to the soundness (subject reduc-
tion) of the type system of%,,..

Lemma 4.2 (Completeness)If (|e];, |[M];) —*
(v, M) for ¢ € {1,2}, then there exists a configu-
ration (v, M’) such thatle, M) —* (v, M’).

The Jif language [14, 17] extends Java with a type sys-
tem for analyzing information flow, and aims to be a prac-
tical language for developing secure applications. However,
there is not yet a noninterference proof for the type system
of Jif, because of its complexity. This work is inspired by
the dynamic label mechanism of Jif, although the dynamic
label mechanism i\ pg.. is Mmore expressive. Jif provides
two constructs for run-time label tests: theitch-label
statement and thectsFor statement, both of which can be
encoded using the label-test expression k... The typ-
ing rules forswitch-label andactsFor are as restrictive
as the typing rule of the label-test expression. Thus, the non-
interference result foh ps.. provides strong evidence that
these dynamic label constructs in Jif are secure.

Banerjee and Naumann [4] proved a noninterference result
for a Java-like language with simple access control primi-

The appendix details the syntax and semantic extensionstlves‘ Unlike inApse, run-time access control in this lan-

: ; uage is separate from the static label mechanism because
of Xbse, and proves the key subject reduction theorem of ﬁ isginspiredp by Java stack inspection. In their language
As... The major extension to Pottier's proof technique is : ’

that the bracket construct must also be applied to labels. Be—the Igbel'o'f a methpd result may depend in I|m|t§d ways on
the (implicit) security state of its caller; however, it does not

cause types may contain bracketed labels, the projection op- o))
eration also applies to typing environments. seem t_o be possible in the Ianguage to control the floyv qf in-
formation from an 1/0O channel or file based on permissions
discovered at run time.
5 Related Work Concurrent to our work, Tse and Zdancewic proved a non-
Dynamic information flow control mechanisms [26, 27] interference result for a security-typed lambda calculgs)(
track security labels dynamically and use run-time security with run-time principals [24], which can be used to construct
checks to constrain information propagation. These mecha-dynamic labels. Howevelg, does not support references
nisms are transparent to programs, but they cannot prevenbr existential types, which makes it unable to represent dy-
illegal implicit flows arising from the control flow paths not namic security policies that may be changed at run time, such
taken at run time. as file permissions. As discussed in Section 1, modeling real

3. Prove the noninterference theorem bfgs..: Be-
cause(elv;/z], M) —* (v}, M!) and elv;/z] =
le[(v1 | va2)/2x]]; for ¢« € {1,2}, by the com-
pleteness lemma there exists’, M’) such that
(e[(vy |v2)/x], M) —* (v', M'). Moreover,|v' |; =
v, for i € {1,2} by the soundness lemma. To prove
the noninterference theorem, we only need to prove
vy = b, thatis, [v'|y = [v']2. By the subject re-
duction theorem of\%,¢_, - v/ : int. By the type
system ofA%,., v’ cannot be a bracket construct be-
cause it has a low-security type. Consequentlynust
be an integen. Then we havév’' |; =n = |[v/]s.

systems requires this ability. By comparison,\ipg.. the
label stored in a reference may be updated at run time, and
with dependent existential types, we can ensure that a piece

of data and its label are updated consistently. Therefore, up-[10]
dating a label dynamically does not declassify confidential
data. In addition, support for references makes.. more
powerful than\gp computationally.

Other work [29, 28] has used dependent type systems to[11]
specify complex program invariants and to statically catch
program errors considered run-time errors by traditional type [12]
systems. This work also makes a trade-off between expres-
sive power and practical type checking.

6

Conclusions

Bl

[13]

This paper formalizes computation and static checking of dy- [14]
namic labels in the type system of a core langugge.. and

proves a noninterference result: well-typed programs have

the noninterference property. The languagg.. is the first
language supporting general dynamic labels whose type sys{15]
tem provably enforces noninterference.

Acknowledgements

The authors would like to thank Greg Morrisett, Steve [16]
Zdancewic and Amal Ahmed for their insightful sugges-
tions. Steve Chong, Nate Nystrom, and Michael Clarkson
also helped improve the presentation of this work.

References

[1] Johan Agat.

(2]

Transforming out timing leaks. Proc.
27th ACM Symp. on Principles of Programming Languages
(POPL), pages 40-53, Boston, MA, January 2000.

David Aspinall. Subtyping with singleton types. [Bom-
puter Science Logic (CSL), Kazimierz, Polapéges 1-15.
Springer-Verlag, 1994.

[3] Anindya Banerjee and David A. Naumann. Secure informa-

tion flow and pointer confinement in a Java-like language.
In IEEE Computer Security Foundations Workshop (CSFW)
June 2002.

[4] Anindya Banerjee and David A. Naumann. Using access con-

(3]

(6]

(7]

(8]

trol for secure information flow in a java-like language. In
Proc. 16th IEEE Computer Security Foundations Workshop
pages 155-169, June 2003.

Dorothy E. Denning. Cryptography and Data Security
Addison-Wesley, Reading, Massachusetts, 1982.

Dorothy E. Denning and Peter J. Denning. Certification of
programs for secure information flonComm. of the ACM
20(7):504-513, July 1977.

Department of Defens®epartment of Defense Trusted Com-

puter System Evaluation CritefidOD 5200.28-STD (The
Orange Book) edition, December 1985.

Simon Foley, Li Gong, and Xiaolei Qian. A security model of
dynamic labeling providing a tiered approach to verification.
In IEEE Symposium on Security and Privapgges 142-154,
Oakland, CA, 1996. IEEE Computer Society Press.

10

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Joseph A. Goguen and Jose Meseguer. Security policies and
security models. IProc. IEEE Symposium on Security and
Privacy, pages 11-20, April 1982.

Nevin Heintze and Jon G. Riecke. The SLam calculus: Pro-
gramming with secrecy and integrity. Rroc. 25th ACM
Symp. on Principles of Programming Languages (PQPL)
pages 365-377, San Diego, California, January 1998.

John McLean. The algebra of securitylEFEE Symposium on
Security and Privacypages 2—7, Oakland, California, 1988.

Catherine Meadows. Policies for dynamic upgrading. In
Database Security, IV: Status and Prospeptges 241-250.

North Holland, 1991.

John C. Mitchell. Foundations for Programming Languages
The MIT Press, Cambridge, Massachusetts, 1996.

Andrew C. Myers. JFlow: Practical mostly-static information
flow control. InProc. 26th ACM Symp. on Principles of Pro-
gramming Languages (POPLpages 228-241, San Antonio,
TX, January 1999.

Andrew C. Myers and Barbara Liskov. A decentralized model
for information flow control. InProc. 17th ACM Symp. on
Operating System Principles (SO$SPages 129-142, Saint-
Malo, France, 1997.

Andrew C. Myers and Barbara Liskov. Protecting privacy us-
ing the decentralized label mod&CM Transactions on Soft-
ware Engineering and Methodolog9(4):410-442, October
2000.

Andrew C. Myers, Lantian Zheng,
Stephen Chong, and Nathaniel Nystrom. Jif: Java
information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001-2003.

Jens Palsberg and Peter @rbaek. Trust inualculus. In
Proc. 2nd International Symposium on Static Analysisn-

ber 983 in Lecture Notes in Computer Science, pages 314—
329. Springer, September 1995.

Francois Pottier and Vincent Simonet. Information flow in-
ference for ML. InProc. 29th ACM Symp. on Principles of
Programming Languages (POPLlpages 319-330, 2002.

Andrei Sabelfeld and Heiko Mantel. Static confidentiality en-
forcement for distributed programs. Proceedings of the
9th International Static Analysis Symposiuwmlume 2477 of
LNCS Madrid, Spain, September 2002. Springer-Verlag.

Andrei Sabelfeld and Andrew Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications21(1):5-19, January 2003.

Ravi S. Sandhu and Sushil Jajodia. Honest databases that can
keep secrets. IRroceedings of the 14th National Computer
Security Confereng&Vashington, DC, 1991.

lan Sutherland, Stanley Perlo, and Rammohan Varadarajan.
Deducibility security with dynamic level assignments. In
Proc. 2nd IEEE Computer Security Foundations Workshop
Franconia, NH, June 1989.

Stephen Tse and Steve Zdancewic. Run-time principals in
information-flow type systems. MEEE Symposium on Secu-
rity and Privacy Oakland, CA, May 2004.

Steve Zdancewic,

[25] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A expression forms. In additiorie; | e2)[v/z], the capture-

sound type system for secure flow analysisurnal of Com- free substitution ob for = in (e1 | e2), must use the corre-
puter Security4(3):167-187, 1996. sponding projection of in each branchie; | e)[v/z] =

[26] Clark Weissman. Security controls in the ADEPT-50 time- (e1[|v]1/x] | e2[|v]2/x]).
sharing system. IPAFIPS Conference Proceedingsol- In \%,,., labels can be bracket constructs, and types may
ume 35, pages 119-133, 1969. contain bracketed labels. Thus, the projection operation

[27] John P. L. Woodward. Exploiting the dual nature of sensitivity can be applied to labels, types, type assignments, and la-
labels. INIEEE Symposium on Security and Privappges bel constraints. Similarly, the projection functions are ho-
23-30, Oakland, California, 1987. momorphisms on these typing constructs. For example,

[28] Hongwei Xi. Imperative programming with dependent types. |int ;| gy]1 = intg, and|z:7,y:7']1 = x: [7]1,y:

In Proceedings of 15th Symposium on Logic in Computer Sci- |7/ ;.
ence Santa Barbara, June 2000. The following relabeling rule is added to reason about re-

[29] Hongwei Xi and Frank Pfenning. Dependent types in practi- labeling relationship between bracketed labels:
cal programming. IfProc. 26th ACM Symp. on Principles of
Programming Languages (POPlpages 214-227, San Anto- IC|1iF 1)1 E |£2]1 |Cl2 F [41])2 C [£2]2

nio, TX, January 1999. ChH/{ Ty

[30] Steve Zdancewic and Andrew C. Myers. Secure information
flow via linear continuations.Higher Order and Symbolic

Computation15(2-3):209-234, September 2002. Since a\?,4,. term effectively encodes twhpg,. terms,

[31] Steve Zdancewic and Andrew C. Myers. Observational deter- the evaluation of a\%,¢.. term can be projected into two
minism for concurrent program security. fioc. 16th IEEE)\ o evaluations. An evaluation step of a bracket expres-
Computer Security Foundations Workshppges 29-43, Pa- gjon (¢, | e,) is an evaluation step of eithef or e,. and
cific Grove, California, June 2003. e1 Or e, can only access the corresponding projection of

[32] Lantian Zheng and Andrew C. Myers. Dynamic security la- the memory. Thus, the configuration &},¢.. has an index
bels an_d nopinterferen_ce. Technical Rgport 2004—1924, Cor-; ¢ {e,1,2} that indicates whether the term to be evaluated
nell University Computing and Information Science, 2004. 5 5 subterm of a bracket expression, and if so which branch

of a bracket the term belongs to. For example, the config-
uration (e, M); means that belongs to the first branch of

A Subject Reduction Proof a bracket, an@ can only access the first projection bf.

We write “(e, M)” for “ (e, M),", which means: does not

belong to any bracket.

As described in Section 4.4, the noninterference result for
ADsec IS proved by extending the language to a new language
A s, that includes the special bracket construct. Then the
subject reduction property fox3,,.. implies the noninter- ~ A.2 Operational semantics
ference property foh ps... The appendix details the syntax
and semantic extensions ¥}, and proves the key subject
reduction theorem.

The operational semantics &%, is shown in Figure 6. It

is based on the semantics ®fs.. and contains some new

evaluation rules (E10—-E14) for manipulating bracket con-

A.1 Syntax extensions structs. Rules (E2)—(E4) are modified to access the memory
)] projection corresponding to index The rest of the rules in

The syntax extensions of}g,, include the bracket con- Figure 2 are adapted i, o, by indexing each configuration

structs and a new valueid that can have any type. X,s.. with 7. The following two lemmas state that the operational
memory encodes twips.. memories, which may havg dis- semantics of\2,, is adequate to encode the execution of
tinct domains. The bindings of the form™ — (v | void) WO A pse. terms. Their proof is straightforward.
andm™ — (void|v) represent situations whene” is bound
within only one of the two\ ps.. memories. Lemma A.1 (Soundness).If (e, M) — (¢/, M’), then
/ / N
¢ oa= | ()0 (leli, [M]:) — ([€']s, [M'];) fori € {1,2}.
m= ... | (v]|v) | void .
e u= ... | (ele) Lemma A.2 (Completeness).If (le|;, |[M];) +—

(v;, M}y for i € {1,2}, then there exists a configuration
The bracket constructs cannot be nested, so the subterms ofv, M’) such thate, M) —* (v, M’).
a bracket construct must bepg.. terms orvoid. Given
a Mg, expressiore, let [e]; and [e] represent the two The type system ok?., includes all the typing rules in
Apsec terms thate encodes. The projection functions sat- Figure 5 and has two additional rules, one for typirg.d,
isfy |(e1 | e2)]; = e; and are homomorphisms on other the other for typing bracket constructs.

11

if |v1]2 C |v2]2 then |e1]2 else |ez]2), M)

if v =(v]v') or vz =(v|v)

[E2] (Im™, M); — (read; M(m"), M),

23] o o s)

[E4] (m” := v, M)i — ((), M[m” + update; M(m") v]);

(E10] T i T

[EL1] ((vi [v2)v, M) — ((vi|v]1 |v2|v]2), M)

[E12] ((viv2) = v, M) — ((v1 := [v]1 | v2 := [v]2), M)

[E13] (1 [v2), M) — ((to1 | lv2), M)

(E14) (if v1 C vs then e else es, M) — ((if |v1]s T |vs)1 then |e1]: else [ea]: |
if v = (v] ') Orvs = (v] V')

[E15] (vi Uvg, M) — (([v1]1 U [vz]u | [v1]2 U [v2]2), M)

E16]

[Auxiliary functions]

new, v = v
new; v = (v | void)
newz v = (void | v)

updatee vv’ = v’
update; vv’ = (v | [v]2)
updates vv’ = (|v]1 | V)

(let (z,y)=((x=01[C], va:7) | (z=01[C"], v2:7")) ine, M) — (e[(va [v2)/y][(v1 [v1)/2], M)

reade v = v
read; v = [v]1
reads v = V]2

Figure 6: Small-step operational semantics\$f;..

[VOID] I';C; pckvoid : 7
T)3sLClpel s en s L)y
[T]2;5[Claslpc’|a ez : [7]2

HuUupcCpd HCT

[BRACKET]

I';C5pek(e1]e2) : 7

A.3 Subject reduction

The proof of subject reduction starts with some lemmas
about projection and substitution.

Lemma A.3 (Label Projection). If C + ¢; T /5, then
[C|iF |41]; T |£2]; fori e {1,2}.

Proof. By induction on the derivation af' - ¢; C ¢5,. [

Lemma A.4 (Constraint Reduction). If T';C, ¢,
ly;pcke:TandCF £y C 4y, thenl';C; pcke: 7.

C

Proof. By induction on the derivation df ; C, ¢; C 45 ; pc
O

e:T.

12

Lemma A.5 (Projection). If I';C'; pc - e :
LFJz ,LCJl ;chJi H Ler : |_7'Ji, fori e {1,2}

Proof. By induction on the derivation df ;C; pc e : 7,
and using the label projection lemma. O

T, then

Lemma A.6 (Store Access).Leti be in{e,1,2}. Suppose
pct v :7andpck o' : 7. Inaddition,i € {1,2} implies
H C 7. Thenpc - read; v : |7];, pc F new; v : 7 and
pc - update; vv’ : T.

Proof. By the definition of the functionsead, new and
update in Figure 6, by the projection lemma, and rules
(VOID) and (BRACKET). O

Lemma A.7 (Substitution). If = : 7/, T;C;pc - e : T,
andk v : 7'[v/z], thenT'[v/z]; Clv/x]; pcfv/x] b elv/x] :
Tlv/x].

Proof. By induction on the derivation aof : 7/, T"; C'; pc I
O

e:T.

Theorem A.1 (Subject Reduction). Supposepc + ¢ : T,
memory M is well-typed, (e, M), — (¢’, M');, andi €

{1,2} implies H C pc. Thenpc - ¢’ : 7, and M’ is also
well-typed.

Proof. By induction on the derivation ofe, M), ——

e/, M");. Without loss of generality, we assume that the
last step of the derivation gic - e : 7 does not use the

rule (SUB). Here we just show eight cases: (E3), (E5), (ES6),
(E8), (E10), (E11), (E14) and (E16). The rest of evaluation

rules are treated similarly.

e Case (E3)eisref” v, andr is (7' ref) . Thene is
m™ . By (LOC),pcF €' : (7' ref),. By Lemma A.6,
pct new;v : 7. Thus,M[m™ — new;v] is well-typed.

e Case (E5).e is (A(z : 7/)[C";pc].€")v. Thenpc F

3

Az = 7)[C";pdl.e : ((z:7") in, T1)¢, and

pc v : 7, and+- C”[v/z]. By rules (APP) and

(L-APP), 7 = 7[v/z] U ¢, andpc C pc’[v/z]. By
rules (ABS) and (SUB)z : 7;C";pc’ ¢ : 71, and
F 7" <7,k pd C pc,andC” - C'. Therefore}

C'v/z], andpc C pc’[v/z]. By the substitution lemma,

C'v/z];pc[v/x]) €' [v/z] : 7 [v/x]. By Lemma A.4,
pc'[v/x] - €'[v/x] : 7 [v/x]. Sincepc C pc’[v/x] and
71[v/x] C 7, we havepc - e'[v/z] : T.

e Case (E6). By rule (IF)ky C ko;pc F ey : 7. By
Lemma A4 and. | ki C ko, we havepc e : 7.

e Case (E8)eislet (z,y)=(z=v1[C], va:72) ine’.
By rule (UNPACK), pc F (z = v[C], v2 : T2) :
((z : 7)[C] * o), andz : 7y UL,y : 2 U L;pc
e’ : 7. By rule (PROD),pc F v; : 7[v1/x], and
pc F wlvi/x] : 72fvi/z], andk Clvi/z]. Using
the substitution lemma twice, we gétfv,/z];pc +
e[vr/a][valor /] /y] : Tlor/avalvr /2] /y]. Itis easy
to show thate’[v/x][va]v1/2]/y] = €' [v2/y][v1/x].
According to rule (UNPACK)z,y ¢ FV (7). Thus,
7[v1/x][ve[v1/2]/y] = 7. In addition, we have-
Clvy/x]. Thereforepc b e[vy /x][va/y] : T.

e Case (E10).cis (e1 | e2). Without loss of generality,

assumdey, M), — (e}, M’); andey = €}. By rule
(BRACKET), H C pc, and|pc|i F ey : |7]1. HC pc
implies H C |pc];. By induction,|pc|; + €} : |7]1,

andM’ is well-typed. Using rule (BRACKET), we can

getpct (e} | eh) : 7.
e Case (El11).eis (v; | v2)v. By (APP) and (L-APP),

pck (v | v2): ((x:7") L, "¢, andpe - v 2 7.
Thenrt = 7"[v/z] U ¢. In addition,pc LI ¢ C pc’. By
(BRACKET), H C ¢, which impliesH C pc’. By

Lemma A5, [pcl; b v ¢ ((x: [r],) LSty
|7]é)1e).» and [pcl; = [v]; 7], which imply

|pcl: F wvilv]; : [7]:- According to (APP) and (L-

APP), a well-typed application expressieje, can be

type-checked with th@c component of the type af;
in the typing context. Thereforépc’ |; F v;|v]; : | 7]
Since H C pc, we can apply (BRACKET) to get
pck (vi|v]1 |ve|v]e) : 7.

Case (E1l4).e is if v; C vy then e; else eq, and
there existg € {1, 2} such thaw; = (v | v"). Suppose
pe b v; : labely, for i € {1,2}. Sincev; is a bracket
construct,H T ¢;. By (IF), bothe; ande, are type-
checked withpc LI ¢ LI 45 in the typing context. Thus,
we can gepcllliUly e : 7. By Lemma A.5, pcli¢; L
gQJi F Ler : LTJl HLC gj ImplleSH C |_pC|_|A€1 L|£2Ji.
Applying (BRACKET), we geppc - (le|1 | le]2) : 7.

Case (E16). e is let (z,y) = ((&z = v»[C], vs :
7) | (& =v{[C'], vy : 7)) in /. Suppose expression
((x =n[C], va:7) | (x =v{[C'], v} : 7)) has type
(x:71)[Co] * 12) 1. Itis easy to show that, | v;) and
(v2|vh) have typer; andr, respectively. Then this case
is reduced to case (E8), which is standard.

O

